A Memetic Genetic Algorithm for the Vertex p-center Problem

نویسنده

  • Wayne J. Pullan
چکیده

The p-center problem is one of choosing p facilities from a set of candidates to satisfy the demands of n clients in order to minimize the maximum cost between a client and the facility to which it is assigned. In this article, PBS, a population based meta-heuristic for the p-center problem, is described. PBS is a genetic algorithm based meta-heuristic that uses phenotype crossover and directed mutation operators to generate new starting points for a local search. For larger p-center instances, PBS is able to effectively utilize a number of computer processors. It is shown empirically that PBS has comparable performance to state-of-the-art exact and approximate algorithms for a range of p-center benchmark instances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOLVING A STEP FIXED CHARGE TRANSPORTATION PROBLEM BY A SPANNING TREE-BASED MEMETIC ALGORITHM

In this paper, we consider the step fixed-charge transportation problem (FCTP) in which a step fixed cost, sometimes called a setup cost, is incurred if another related variable assumes a nonzero value. In order to solve the problem, two metaheuristic, a spanning tree-based genetic algorithm (GA) and a spanning tree-based memetic algorithm (MA), are developed for this NP-hard problem. For compa...

متن کامل

A hybrid algorithm for the path center problem

Let a graph G = (V;E) be given. In the path center problem we want to find a path P in G such that the maximum weighted distance of P to every vertex in V is minimized. In this paper a genetic algorithm and ahybrid of genetic and ant colony algorithms are presented for the path center problem. Some test problems are examined to compare the algorithms. The results show that for almost all exampl...

متن کامل

A new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problem

Automated Guided Vehicle System (AGVS) provides the flexibility and automation demanded by Flexible Manufacturing System (FMS). However, with the growing concern on responsible management of resource use, it is crucial to manage these vehicles in an efficient way in order reduces travel time and controls conflicts and congestions. This paper presents the development process of a new Memetic Alg...

متن کامل

Genetic and Memetic Algorithms for Sequencing a New JIT Mixed-Model Assembly Line

This paper presents a new mathematical programming model for the bi-criteria mixed-model assembly line balancing problem in a just-in-time (JIT) production system. There is a set of criteria to judge sequences of the product mix in terms of the effective utilization of the system. The primary goal of this model is to minimize the setup cost and the stoppage assembly line cost, simultaneously. B...

متن کامل

A multi-objective memetic algorithm for risk minimizing vehicle routing problem and scheduling problem

In this paper, a new approach to risk minimizing vehicle routing and scheduling problem is presented. Forwarding agents or companies have two main concerns for the collection of high-risk commodities like cash or valuable commodities between the central depot and the customers: one; because of the high value of the commodities transported, the risk of ambush and robbery are very high. Two; the ...

متن کامل

A redundancy allocation problem with the choice of redundancy strategies by a memetic algorithm

This paper proposes an efficient algorithm based on memetic algorithm (MA) for a redundancy allocation problem without component mixing (RAPCM) in a series-parallel system when the redundancy strategy can be chosen for individual subsystems. Majority of the solution methods for the general RAPCM assume that the type of a redundancy strategy for each subsystem is pre-determined and known a prior...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolutionary computation

دوره 16 3  شماره 

صفحات  -

تاریخ انتشار 2008